Ember CSI plugin Documentation

Release 0.9.1

Gorka Eguileor

Jan 25, 2022

Contents

1	Intro	duction	3
	1.1	Features	3
	1.2	Limitations	4
	1.3	Supported drivers	4
2	Insta	llation	7
	2.1	Requirements	7
	2.2	OpenShift	7
3	Usag	e	17
	3.1	Volume creation	17
	3.2	Using volumes	19
	3.3	Expanding Volumes	19
	3.4	Volume cloning	20
	3.5	Snapshot creation	21
	3.6	Restoring a snapshot	21
	3.7	Volume deletion	22
	3.8		23
4	Trou	bleshooting	25
	4.1	Status	25
	4.2	Logs	26
	4.3		27
	4.4	CRDs	29

Welcome to the Ember-CSI documentation!

Ember-CSI is a plugin to provision and use block and file storage in containerized workloads on Kubernetes and OpenShift.

The documentation for the site is organized into the following sections:

CHAPTER 1

Introduction

The Container Storage Interface (CSI) is a standard for provision and use block and file storage systems in containerized workloads on Container Orchestration Systems (COs) like OpenShift.

Using this interface new storage systems can be exposed to COs without needing to change the COs code.

Ember-CSI is an Open Source implementation of the CSI specification supporting storage solutions from multiple vendors by leveraging a library called cinderlib that provides an abstraction layer over the storage drivers.

1.1 Features

Ember-CSI supports CSI versions 0.2, 0.3, 1.0, and 1.1 providing the following features:

- Volume provisioning: file and block types
- Volume cloning
- Volume deletion
- · Snapshot creation
- Create volume from a snapshot
- · Snapshots deletion
- Listing volumes with pagination
- Listing snapshots with pagination
- Attaching/Detaching volumes
- Multi pod attaching (block mode only)
- Storage capacity reporting
- Node probing

1.2 Limitations

There are 2 types of volumes in OpenShift and Kubernetes, Block and File, and while both are supported by Ember-CSI, behind the scenes all the storage drivers in Ember-CSI are for block storage systems.

To provide File volumes from block storage Ember-CSI connects the volumes to the host, formats and present them to the Orchestrator for the containerized workloads.

Since File type volumes are locally attached block volumes they cannot be shared between containers, so the Shared Access (RWX) Access Mode is not supported.

This limitation does not apply to block volumes, that can be mounted in multiple hosts simultaneously and it's the application the one responsible to orchestrate the proper access to the disk.

1.3 Supported drivers

Ember-CSI includes a good number of storage drivers, but due to limitation on hardware availability only a small number of them have been validated at one point or another. In alphabetical order they are:

- HPE3PARFC
- HPE3PARISCSI
- KaminarioISCSI
- LVMVolume
- PowerMaxFC
- PowerMaxISCSI
- PureFC
- PureISCSI
- QnapISCSI
- RBD
- SolidFire
- SynoISCSI
- XtremIOFC
- XtremIOISCSI

The remaining drivers included in Ember-CSI have not been validated yet:

- ACCESSIscsi
- AS13000
- FJDXFC
- FJDXISCSI
- FlashSystemFC
- FlashSystemISCSI
- GPFS
- GPFSRemote

- HPELeftHandISCSI
- HPMSAFC
- HPMSAISCSI
- HedvigISCSI
- HuaweiFC
- HuaweiISCSI
- IBMStorage
- InStorageMCSFC
- InStorageMCSISCSI
- InfortrendCLIFC
- InfortrendCLIISCSI
- LenovoFC
- LenovoISCSI
- LinstorDrbd
- LinstorIscsi
- MStorageFC
- MStorageISCSI
- MacroSANFC
- MacroSANISCSI
- NetAppCmodeFibreChannel
- NetAppCmodeISCSI
- NexentaISCSI
- PSSeriesISCSI
- Quobyte
- RSD
- SCFC
- SCISCSI
- SPDK
- Sheepdog
- StorPool
- StorwizeSVCFC
- StorwizeSVCISCSI
- Unity
- VNX
- VZStorage
- VxFlexOS

- WindowsISCSI
- WindowsSmbfs
- ZadaraVPSAISCS

CHAPTER 2

Installation

2.1 Requirements

Ember-CSI has the following requirements:

- Operating system: A Red Hat Linux distribution (support for other distributions is possible but not currently provided by the project): Centos 7 and Centos 8 RHEL 7 and RHEL 8 Fedora
- Container Orchestrator: Both Kubernetes and OpenShift are supported: Openshift: Recommended version 4.4 or newer. Supported from version 3.10 onward. - Kubernetes: Recommended version 1.17 or newer. Supported from version 1.11 onward.
- Storage solution: Access and credentials to a supported storage solution.
- Network: Network connections must be setup appropriately. Controller nodes: Must have access to the storage management interface. Some drivers require access to the storage data network as well. Worker nodes: Must have access to the storage data network.
- Services: Depending on the driver and the configuration we may need additional services running on worker nodes and in some drivers controller nodes.
 - iSCSI: For iSCSI drivers the iSCSI initiator, *iscsid* provided by the *iscsi-initiator-utils* package must be configured and running. It can be running baremetal or in a container as long as the appropriate directories from the host are mounted.
 - Multipathing: When selecting multipathing on iSCSI and FC drivers we'll need to have *multipathd*, provided by the *device-mapper-multipath* package, configured and running. It can be running baremetal or in a container as long as the appropriate directories from the host are mounted.

2.2 OpenShift

To eliminate configuration and deployment complexities and the errors that come with them, the recommended mechanism to deploy Ember-CSI is using its operator, which makes installing Ember-CSI a simple and intuitive process.

After logging in the OpenShift console as an administrator we go to the OperatorHub:

Red Hat OpenShift Container Platform	1		
📽 Administrator	-		You are logo
	Ť	Project: all projects 🔹	
Home	>		
Operators	~	OperatorHub	
Operator Hub			pernetes community and Red Hat partners, cura er installation, the Operator capabilities will appe
Installed Operators			
Workloads	>	All Items	All Items
Networking	>	Al/Machine Learning	Filter by keyword
		Application Runtime	

Then we search for the Ember-CSI operator and click on it:

OperatorHub

Discover Operators from the Kubernetes community and Red Hat partners, curated by Red H services to your developers. After installation, the Operator capabilities will appear in the Dev

All Items	All Items
Al/Machine Learning Application Runtime	ember
Big Data	
Cloud Provider	Community
Database	
Developer Tools	Ember CSI Operator provided by Red Hat
Integration & Delivery	provided by Red Hat
Logging & Tracing	Multi-vendor CSI plugin supporting 80+ storage drivers
Monitoring	
Networking	
OpenShift Optional	

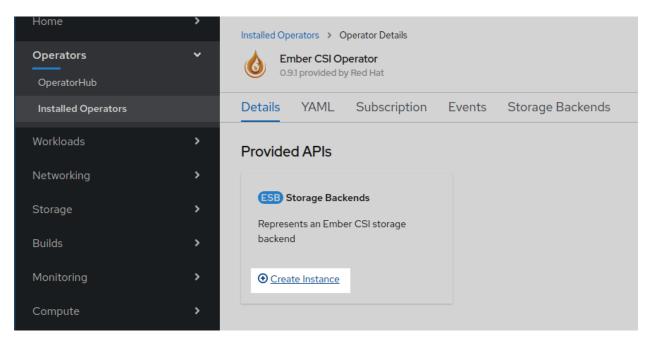
If we are installing the Community Operator we'll be required to confirm that we understand the implications. We click Continue:

	Show Community Operator	figuration
	Community Operators are operators which have not been vetted or verified by Red Hat. Community Operators should be used with caution because their stability is unknown. Red Hat provides no support for Community Operators.	
	Learn more about Red Hat's third party software support policy 🗗	
mmunity ar n, the Oper	Do not show this warning again	t Marketpl
Items	Cancel	
mber		

And we are presented with the Ember-CSI Operator page, where we click Install:

		×
r Version	Community Operator	Î
Install less Upgrades	This is a community provided operator. These are operators which have not been vetted or verified by Red Hat. Community Operators should be used with caution because their stability is unknown. Red Hat provides no support for Community Operators. Learn more about Red Hat's third party software support policy Z	
Pilot Type	Ember-CSI is a multi-vendor CSI plugin driver supporting over 80 storage drivers in a single plugin to provide block and mount storage to container orchestration systems. The operator adds support for management of multiple Ember CSI instances within a cluster and simplifies storage backage deployments.	
		O.9.1 provided by Red Hat Instant ty Level Instant less Upgrades fecycle Insights Pilot Ember-CSI is a multi-vendor CSI plugin driver support policy [2] Ember-CSI is a multi-vendor CSI plugin driver support gover 80 storage drivers in a single plugin to provide block and mount storage to container orchestration systems. Type The operator adds support for management of multiple Ember CSI instances within a cluster and

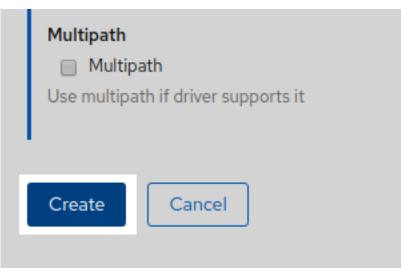
Ed Hat OpenShift Container Platform								
🛠 Administrator	You are logged in as a temporary administrative user. U	Ipdate the <u>cluster OAuth configuration</u> to allow others to log in.						
Se Administrator	OperatorHub > Operator Installation							
Home	> Install Operator							
Operators	Install your Operator by subscribing to one of the update channels to keep the Operator up to date. The strategy determine	es either manual or automatic updates.						
OperatorHub								
Installed Operators	Update Channel *	Ember CSI Operator provided by Red Hat						
Workloads	> • beta	Provided APIs						
Networking	Installation Mode *							
Networking	All namespaces on the cluster (default)	ESB Storage Backends						
Storage	> This mode is not supported by this Operator	Represents an Ember CSI storage						
	A specific namespace on the cluster	backend						
Builds	Operator will be available in a single namespace only.							
Monitoring	Installed Namespace *							
	PR default •							
Compute	Approval Strategy *							
User Management	Automatic							
<u>,</u>	Manual							
Administration								
	Install							


This will trigger the download and execution of the operator container image. It will take a couple of seconds, and in the meantime we'll see that the installation is in progress and maybe a couple of weird entries saying at the beginning:

Operators	~	Installed Operators							
OperatorHub		Installed Operators are represented by Cluster	Service Versions within this namespace. For m	ore information, see the Operator Lifecycle Manag	er documentation 🖉. Or create an Operator and C	luster Service Version using the Operator SDK 🖉.			
Installed Operators		Name Search by name							
Workloads	>	Name 1	Managed Namespaces	Status	Last Updated	Provided APIs			
Networking	>	Ember CSI Operator	NS default	2 Installing	🚱 a few seconds ago	Storage Backends	:		
Storage	>	0.9.1 provided by Red Hat		Up to date					

Once the operator reaches the Succeeded status we click on it:

Inside the Ember-CSI operator page we create a new Storage Backend instance:



Backends can be configured using YAML, but this is a cumbersome process, so it's usually only used on automated processes such as CI systems, and the Ember-CSI team recommends using the form interface when doing things manually, which is the default on OpenShift 4.5.

In the form we should change the *name* field from *default* to a unique and meaningful name to identify this backend. Then go to the *Driver* dropdown and select the name of our storage backend. After selecting the appropriate driver the relevant configuration optionsfor the selected driver will be displayed.

Ember CSI Operator > Create Em	berStorageBackend	
Create EmberStora	geBackend	
Create by completing the form. D	efault values may be provided by the Operator authors.	
Configure via: Form View	YAML View	
Note: Some fields may n	ot be represented in this form. Please select "YAML View" for full control of object creation.	
Name *		
example		±.
Labels		
app=frontend		
Advanced Settings		>
Driver Settings		~
Driver		
ACCESSIscsi 👻		
ACCESSIscsi		
AS13000		
FJDXFC		
FJDXISCSI		
FlashSystemFC		
FlashSystemISCSI		

After setting the configuration options we click *Create* at the botom of the page:

And a new EmberStorageBackend entity will be created. Don't wait for the Status to change, since it won't:

Installed Operators > Operator Details Ember CSI Operator 0.9.2 provided by Red Hat					Actions 👻
Details YAML Subscription	Events Storage Backends				
EmberStorageBackends				Create Ember	StorageBackend
Name Search by name					
Name 1	Kind 🗍	Status 1	Labels 🗍	Last Updated	
ESB example	EmberStorageBackend	-	No labels	🚱 Aug 7, 12:40 am	:

You can see that the deployment is complete going to *Stateful Sets*, *Daemon Sets*, and *Replica Sets* pages in the *Workloads* section to see that the deployed pods are running:

Operators 🗸	Stateful Sets				Create	Stateful Set
OperatorHub	Name 👻 Search by name					
Installed Operators	Name 1	Namespace 1	Status 1	Labels 1	Pod Selector 💲	
Workloads ~	SS example-controller	NS) default	1 of 1 pods	app=embercsi embercsi_cr=ex	ample Q app=embercsi, embercsi_cr=example	:
Deployments						
Deployment Configs						
Stateful Sets						
Daemon Sets					Create Dae	mon Set
Name Search by name	/					
Name 1	Namespace 1	Status 💲	Labels 1		Pod Selector 1	
DS example-node-0	NS default	1 of 1 pods	app=ember	csi embercsi_cr=example	Q app=embercsi, embercsi_cr=example	:
Replica Sets					Create Re	olica Set
Name Search by name	7					
Name †	Namespace 💲	Status 🗘	Labels 💲	Owner 1	Created 1	
RS ember-csi-operator-	NS default	1 of 1 pods	name=ember-csi-operator	ember-csi-operator	Aug 7, 12:30 am	:

You can also check that a new *Storage Class* has been created in *Storage > Storage Classes*. The name of the new class will be *example.ember-csi.io* where *example* will be the name you gate to the *Storage Backend* in the form:

Home	>	Storage Classes		Create Storage Class
Operators		Name Search by name		
OperatorHub Installed Operators		Name 1	Provisioner 1	Reclaim Policy 🛛 🕄
Workloads		S example.ember-csi.io	example.ember-csi.io	Delete
Networking				
Storage Persistent Volumes				
Persistent Volume Claims				
Storage Classes				

We can set this Storage Class as the default class by going to its actions and selecting Edit Annotations:

Storage Classes Name Search by name [2]			Create Storage Class
Name 1	Provisioner 1	Reclaim Policy	
SC example.ember-csi.io	example.ember-csi.io	Delete	:
			Edit Labels
			Edit Annotations
			Edit Storage Class
			Delete Storage Class

And then adding key *storageclass.kubernetes.io/is-default-class* with the value of *true*.

Warning: If you already have a default and you want to change it to this one, you'll you need to modify the current default by removing the annotation or setting it to *false*.

If we have configured everything right we'll now be able to use our storage solution into OpenShift using the new StorageClass that was created by the operator. In the usage section there is information on how to use the new Storage Backend.

If you see problems in the new *Stateful*, *Daemon*, or *Replica Sets*, please refer to the troubleshooting guide for details on how to resolve installation issues.

CHAPTER 3

Usage

Now that we have completed the installation of Ember-CSI, we can manage our Storage Backend in our Container Orchestrator.

In this section examples will be provided both for the OpenShift Web Console and for the command line in the form of YAML manifests.

The same YAML manifests work on Kubernetes and OpenShift, the only difference is the command to invoke. For Kubernetes we'll use *kubectl* and $\circ\circ$ for OpenShift:

```
$ # On OpenShift
$ oc apply -f manifest.yaml
$ # On Kubernetes
$ kubect1 apply -f manifest.yaml
```

NOTE: In all the examples we'll assume we created the *Storage Backend* with the default name *example* using the Operator, and that the *Storage Class* automatically created is *example.ember-csi.io*

3.1 Volume creation

We can create 2 types of volumes, Block and File, and both are supported by Ember-CSI, but OpenShift forms don't allow specifying the type on creation, so they always default to File.

To create a volume we go to Storage > Persistence VolumeClaims and click on Create Persistent Volume Clain.

On the next page we must select the *Storage Class* created by the operator, give the *PVC* a unique name, select the *Access Mode* and the size.

Create Persistent Volume Claim

Storage Class

SC example.ember-csi.io

Storage class for the new claim.

Persistent Volume Claim Name *

my-pvc

A unique name for the storage claim within the project.

Access Mode *

```
Single User (RWO) Shared Access (RWX) Read Only (ROX)
```

Permissions to the mounted drive.

Size *

Desired storage capacity.

Use label selectors to request storage

Use label selectors to define how storage is created.

Warning: Ember-CSI only supports the Shared Access (RWX) Access Mode for Block volumes.

Note: OpenShift doesn't support selecting the type of volume we want to create, so we'll have to use YAML if we want to create a Block volume.

To select the type of volume we want in our YAML we'll use the volumeMode parameter. Acceptable values are Block and Filesystem, the default being Filesystem.

Example of a *PVC* manifest using this default:

```
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
   name: my-pvc
spec:
   accessModes:
    - ReadWriteOnce
   resources:
       requests:
       storage: 1Gi
   storageClassName: example.ember-csi.io
```

Edit YAML

•

<u>+</u>

Similar *PVC* example for a Block volume:

```
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
   name: my-block-pvc
spec:
   accessModes:
        - ReadWriteOnce
   volumeMode: Block
   resources:
        requests:
        storage: 3Gi
   storageClassName: example.ember-csi.io
```

3.2 Using volumes

Using a dynamically created *PVC* is as easy as adding a persistentVolumeClaim parameter with the claimName in the volumes section of our manifest:

```
kind: Pod
apiVersion: v1
metadata:
 name: my-app
spec:
  containers:
   - name: my-frontend
     image: busybox
      volumeMounts:
      - mountPath: "/data"
       name: my-csi-volume
      command: [ "sleep", "1000000" ]
  volumes:
    - name: my-csi-volume
      persistentVolumeClaim:
        claimName: my-pvc
```

3.3 Expanding Volumes

We can expand already created volumes to have more space without losing existing data. The operation is called *expanding*, and it's very straightforward. In the web console we just go to the actions we can do in the *PVC* and select *Expand PVC*.

Persistent Volum	ne Claims				Create Persistent Volume Claim
▼ Filter ▼ Name	Search by name				
Name 1	Namespace 1	Status 1	Persistent Volume	Capacity 🗍	Storage Class
Pro my-pyc	C default	Bound	Pvc-f0b00ac9-6645-4b86- a0c7-b70bcc3e2d82	1Gi	Expand PVC Edit Labels Edit Annotations Edit Persistent Volume Claim Delete Persistent Volume Claim

Then write the new size, that must be greater or equal than the existing size, and click on Expand.

	Expand Persistent Volume Claim	<u>Fi</u>
	Increase the capacity of claim my-pvc. This can be a time-consuming process. Size * 2 GiB	
ce	Cancel Expand	

When using the command line and a YAML manifest, we just need to modify the original contents with the new storage size, and it's important to use apply and not create on the command line:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: csi-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 2Gi
<pre>storageClassName: example.ember-csi.io</pre>

3.4 Volume cloning

Volume cloning is the process of creating a new volume with the same contents as the source volume.

The new volume must be greater or equal in size as the original one and the source volume must be specified in the

dataSource parameter, which is not available yet in the OpenShift Web Console, so we'll have to use YAML to do it:

```
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
   name: cloned-vol
spec:
   storageClassName: example.ember-csi.io
   volumeMode: Block
   dataSource:
        name: my-block-pvc
        kind: PersistentVolumeClaim
   accessModes:
        - ReadWriteOnce
   resources:
        requests:
        storage: 5Gi
```

3.5 Snapshot creation

During the deployment phase the Operator also creates a *VolumeSnapshotClass* for our Storage Backend with the same name as the *StorageClass* so we can easily create snapshots.

Note: As of OpenShift 4.5 the Web Console doesn't have support for snapshots, but the necessary code is being merged in master, so it will most likely be available in OpenShift 4.6.

So we'll have to use a YAML manifest and use the source parameter to define the volume we want to snapshot.

```
apiVersion: snapshot.storage.k8s.io/v1beta1
kind: VolumeSnapshot
metadata:
    name: my-snapshot
spec:
    volumeSnapshotClassName: example.ember-csi.io
    source:
        persistentVolumeClaimName: my-block-pvc
```

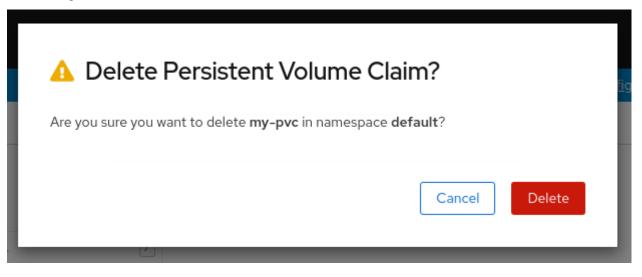
3.6 Restoring a snapshot

To restore an already created snapshot we'll have to create a new volume and use our snapshot as its source.

The new volume must be of greater or equal size than the snapshot.

```
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
   name: restored-snapshot
spec:
   storageClassName: example.ember-csi.io
   dataSource:
        name: my-snapshot
```

```
kind: VolumeSnapshot
    apiGroup: snapshot.storage.k8s.io
    accessModes:
        - ReadWriteOnce
    resources:
        requests:
        storage: 3Gi
```


3.7 Volume deletion

The *Storage Class* created by the operator is defined with a Delete ReclaimPolicy, which means that once we delete the *PVC* the dynamically created *PV* will be deleted.

We can delete a volume in the OpenShift Web Console by going to *Storage > Persistence VolumeClaims* and look for the *PVC* we want to delete and in its actions we select *Delete Persistent Volume Claim*:

Persistent Volur	ne Claims				Create Persistent Volume Claim	
TFilter - Name	Search by name					
Name †	Namespace 1	Status 1	Persistent Volume 1 Capaci	ty 🕄 Sto	orage Class 🗍	
PVC my-pvc	NS default	🕏 Bound	ev pvc-f0b00ac9-6645-4b86- 1Gi a0c7-b70bcc3e2d82	S	example.ember-csi.io	
			8007-070800322002		Expand PVC	
					Edit Labels	
					Edit Annotations	
					Edit Persistent Volume Claim	
					Delete Persistent Volume Clain	

Deletion requires confirmation, so we'll have to click on the Delete volume:

Deleting the *PVC* from the command line can be done using the name:

\$ oc delete pvc my-block-pvc

Or with the manifest we used to create it:

\$ oc delete -f manifest.yaml

3.8 Snapshot deletion

Note: As of OpenShift 4.5 the Web Console doesn't have support for snapshots, but the necessary code is being merged in master, so it will most likely be available in OpenShift 4.6.

Deleting a VolumeSnapshot from the command line can be done using the name:

\$ oc delete pvc my-snapshot

Or with the manifest we used to create it:

\$ oc delete -f manifest.yaml

CHAPTER 4

Troubleshooting

The main tool used to investigate issues between Ember-CSI and the Orchestrator are OpenShift/Kubernetes status and logs.

Ember-CSI runs 2 types of services, one is the controller and the other is the node type. While the controller takes care of the management operations (create, delete, map/unmap, snapshots, etc.) the node mostly takes care of doing the local attach and detach on the hosts that are running the pods.

These services follow the CSI specification, exposing all their operations through a gRPC interface that needs to be translated into OpenShift/Kubernetes objects. The sidecars present in the Ember-CSI pods are responsible for the translation.

4.1 Status

The first thing we need to do when we encounter an issue is make sure that all the containers in the Ember-CSI pods, the driver container and the sidecars, are running and that their restart counts are not increasing.

Instead of looking at all the pod in our deployment we can use the fact that the operator adds the embercsi_cr label to filter for the pods of a specific backend:

```
$ # On OpenShift
$ oc get pod -n <cluster-namespace> -l embercsi_cr=<backend_name> -o wide
$ # On Kubernetes
$ kubectl get pod -n <cluster-namespace> -l embercsi_cr=<backend_name> -o wide
```

Or the pods for all the Ember-CSI backends:

\$ oc get pod -n <cluster-namespace> -l embercsi_cr -o wide

When using an iSCSI or FC backend we need to make sure that the system daemons required for the connections are running and they are not reporting errors if we encounter issues on the following operations:

• Creating a volume from a source (volume or snapshot): On some drivers this is not a backend assisted operation, so the resources in the backend need to be accessed in the controller node.

• Creating or destroying a pod that uses an Ember-CSI volume:

If we are running the daemons as systemd services on baremetal, we can check them running:

```
$ systemctl status iscsid multipathd
$ sudo journalctl -u iscsid -u multipathd
```

On the other hand, if we are running the daemons in the foreground inside containers, we'll have to check the containers status and logs themselves.

4.2 Logs

One of the most versatile tools to debug issues in general are the logs, and Ember-CSI is no different.

The logs we'll have to check will depend on the operations that are failing:

- If it's creating/deleting a volume or creating/deleting a snapshot, we should look into the Ember-CSI controller pod, primarily the driver container.
- Creating/destroying a pod that uses a volume is one of the most complex operations, and it requires the controller pod, the node pod, and the kubelet, so we'll have to look into all their logs.

By default Ember-CSI logs will be on *INFO* level and they can only be changed to *DEBUG* when creating the Storage Backend in the *Advanced Settings* section:

Ember CSI Operator > Create EmberStorageBackend	
Create EmberStorageBackend	
Create by completing the form. Default values may be provided by the Operator authors.	
Configure via:	
() Note: Some fields may not be represented in this form. Please select "YAML View" for full control of object creation.	
Name *	
example	<u>ا</u>
Labels	
app=frontend	

By setting the Debug logs checkbox:

Quiet

Quiet

Disable all the logs in the CSI plugins

Debug logs

Enabled debug log levels (quiet option must not be set)

4.3 CSC

When debugging issues on complex flows, it's very convenient to be able to test the individual tasks that form the flows. For that purpose the Ember-CSI has created containers with the csc tool for each of the CSI specs.

The csc tool allows us to execute specific CSI operations directly against an Ember-CSI service.

For example, we could run a create volume operation completely bypassing the Orchestrator. This way we could focus on the Ember-CSI code itself and the interactions with the storage solutions, removing the interactions with other elements such as OpenShift/Kubernetes scheduler and the sidecars.

Neither Kubernetes nor OpenShift allows adding containers to a running Pod, but there is an Alpha feature called Ephemeral Containers designed for debugging purposes that can do it.

We need to have the feature gate EphemeralContainers enabled in our Orchestrator. Specifically on the API, Scheduler, and Kubelet: --feature-gates=EphemeralContainers=true.

If it's enabled we can add an Ephemeral container with the csc command to our running pod.

For the following steps we'll assume we have used the name example as our Backend name.

First we check the CSI version that is using Ember-CSI:

```
$ oc describe pod example-controller-0|grep X_CSI_SPEC_VERSION
X_CSI_SPEC_VERSION:
                           1.0
```

Now that we know we are running CSI v1.0 we know the csc container we want to use: embercsi/csc:v1.0.0

With that we can write the csc.json file to add the Ephemeral Container:

```
"apiVersion": "v1",
"kind": "EphemeralContainers",
"metadata": {
  "name": "example-controller-0"
}.
"ephemeralContainers": [
  {
    "command": ["tail"],
    "args": ["-f", "/dev/null"],
    "image": "embercsi/csc:v1.0.0",
    "imagePullPolicy": "IfNotPresent",
    "name": "csc",
```

```
"stdin": true,
"tty": true,
"terminationMessagePolicy": "File",
"env": [ {"name": "CSI_ENDPOINT",
"value": "unix:///csi-data/csi.sock"} ],
"volumeMounts": [
{
"mountPath": "/csi-data",
"mountPropagation": "HostToContainer",
"name": "socket-dir"
}
]
}
```

And, assuming we don't have any other Ephemeral Containers, we add it by replace the current value:

If we don't want to create a file we can do a one-liner by using echo a piping it to the oc replace command and setting the file contents to *stdin* with -f -.

Now that we have added the Ephemeral Container we can confirm it is running looking at the description of the controller pod and going to the Ephemeral Containers section and checking the State:

```
$ oc describe pod example-controller-0
. . .
Ephemeral Containers:
  csc:
    Container ID: docker://
→e52d25a53af77a6f660d171504aa9dc6c2c3d405a9af20451054fadba969c84a
    Image: embercsi/csc:v1.0.0
Image ID: docker-pullable://embercsi/
→csc@sha256:5433e0042725398b9398be1b73d43cc96c77893cf4b77cafca77001fa533cd29
                    <none>
    Port:
    Host Port:
                      <none>
    Command:
       sh

        Running

        Started:
        Thu, 13 Aug 2020 14:18:23 +0000

        Running
        Running

    State:
    Ready:
                       False
    Restart Count: 0
    Environment:
       CSI_ENDPOINT: unix:///csi-data/csi.sock
    Mounts:
       /csi-data from socket-dir (rw)
```

When we have the shell container running we can run csc commands by attaching to the shell. For example to see the help:

```
$ oc attach -it example-controller-0 -c csc
If you don't see a command prompt, try pressing enter.
/ # csc
NAME
```

```
csc -- a command line container storage interface (CSI) client
SYNOPSIS
csc [flags] CMD
AVAILABLE COMMANDS
controller
identity
node
Use "csc -h,--help" for more information
```

Warning: Just like with normal containers, once you add an Ephemeral Container to a pod you cannot remove it, so be sure to detach from the container and not exit the shell, or the container will no longer be running and you won't be able to use it (you cannot run exec on an Ephemeral Container).

Note: To detach from the csc container shell you must type the escape sequence Ctrl+P followed by Ctrl+Q.

4.4 CRDs

Ember-CSI uses OpenShift/Kubernets etcd service to store metadata of its resources in the form of CRDs. Existing CRDs are:

- Volume: Stores each volume's status as well as the information necessary to locate them in the storage solution.
- Snapshot: Stores the information necessary to locate each snapshot in the storage solution.
- Connection: Stores the connection information needed for a node to connect to a volume.
- KeyValue: Stores the connector information needed to map the volumes to the nodes on the storage solution.

These CRDs are just JSON dictionaries with all the information Ember-CSI needs to operate, and in some cases it can be useful to examine them to see internal information.